Очень вязкие жидкости также плохо распыляются в электрическом поле, поскольку вязкость жидкости ограничивает возможность выброса тонкой нити. С увеличением вязкости растет диаметр нити и соответственно размер капель, на которые она дробится. Вязкость краски должна быть не более 0,07 Па‡с. Оптимальный размер частиц краски составляет 15§30 мкм.
Проводимость краски оказывает решающее влияние на процесс накапливания заряда на капле жидкости. Жидкость с очень малой электрической проводимостью (менее 10-8 1/Ом‡м) не распыляются в электрическом поле. Чем выше проводимость, тем быстрее подтекает заряд и больше сила, воздействующая на каплю. Однако при увеличении проводимости выше 10-2 1/Ом‡м распыление краски опять прекращается. Это связано с возникновением коронного разряда на капле и внедрением в промежуток большого объемного заряда, снижающего напряженность электрического поля на кромке сопла распылителя. Оптимальная проводимость краски лежит в диапазоне 10-5§10-6 1/Ом‡м.
Если поверхностное натяжение велико, то возможно, что раньше, чем произойдет нарушение устойчивости поверхности капли, начнется коронный разряд, препятствующий дальнейшему увеличению напряженности поля у поверхности капли. Коэффициент поверхностного натяжения краски не должен превышать (4§5)‡106 Н/см.
При малой напряженности поля распыление не происходит, так как электрическая сила недостаточна, чтобы преодолеть силу поверхностного натяжения. От распылителя отрываются крупные капли под действием своего веса. Для увеличения напряженности электрического поля стремятся уменьшить радиус закругления кромок сопла распылителя (Екромки 10кВ/см).
На процесс распыления оказывают наибольшее влияние напряженность поля в непосредственной близости от распылителя, поверхностное натяжение, проводимость, вязкость жидкости, а также расход жидкости, то есть скорость ее поступления в зону распыления.
Образующаяся на выходе из распылителя капля растет до тех пор, пока действующие на нее электрические силы не превысят силы поверхностного натяжения. Происходит нарушение устойчивости поверхности на вершине капли где поле максимально и, как следствие, выброс тонкой струйки. Далее эта тонкая струйка дробится на мелкие капли. Выброс тонкой струйки является условием мелкодисперсного распыления жидкости в электрическом поле.
дробления струйки;
4 – мелкие капли после
3 струйка краски;
2 капля краски;
1 сопло распылителя;
Рис. 1. Процесс зарядки и распыления краски
Процесс распыления жидкости в электрическом поле происходит следующим образом (рис. 1).
3) повышении адгезии покрытия к поверхности изделия.
2) уменьшении загрязнений окружающей среды;
1) уменьшении потерь краски до 10§20% вместо 50§70%;
Преимущества при окраске в электрическом поле по сравнению с пневматической окраской заключаются в:
Окраска изделий является одним из технологических процессов, при котором применение электрического поля эффективно. Принципиально технология электроокраски заключается в распылении и зарядке частиц краски и осаждении заряженных частиц краски на изделии в электрическом поле. В результате на изделии формируется равномерный тонкий слой краски.
Научные статьи для Вашей учебы на all4study.ru!
Электроокраска – нанесение покрытий в электрическом поле
Комментариев нет:
Отправить комментарий